Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus
نویسندگان
چکیده
Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5'-terminal IRES. We report that the 982-nt long 5'UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341-950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12). In vitro reconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction.
منابع مشابه
PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation
The cadicivirus IRES diverges structurally from canonical Type 1 IRESs (e.g. poliovirus) but nevertheless also contains an essential GNRA tetraloop in a subdomain (d10c) that is homologous to poliovirus dIVc. In addition to canonical initiation factors, the canonical Type 1 and divergent cadicivirus IRESs require the same IRES trans-acting factor, poly(C)-binding protein 2 (PCBP2). PCBP2 has th...
متن کاملFluorescently-tagged human eIF3 for single-molecule spectroscopy
Human translation initiation relies on the combined activities of numerous ribosome-associated eukaryotic initiation factors (eIFs). The largest factor, eIF3, is an ∼800 kDa multiprotein complex that orchestrates a network of interactions with the small 40S ribosomal subunit, other eIFs, and mRNA, while participating in nearly every step of initiation. How these interactions take place during t...
متن کاملThe double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site.
Poliovirus (PV) plus-strand RNA genomes initiate translation in a cap-independent manner via an internal ribosome entry site (IRES) in their 5' untranslated region. Viral translation is codetermined by cellular IRES trans-acting factors, which can influence viral propagation in a cell-type-specific manner. Engineering of a poliovirus recombinant devoid of neuropathogenic properties but highly l...
متن کاملStructural insights into viral IRES-dependent translation mechanisms.
A diverse group of viruses subvert the host translational machinery to promote viral genome translation. This process often involves altering canonical translation initiation factors to repress cellular protein synthesis while viral proteins are efficiently synthesized. The discovery of this strategy in picornaviruses, which is based on the use of internal ribosome entry site (IRES) elements, o...
متن کاملCoordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.
Protein synthesis in all cells begins with recruitment of the small ribosomal subunit to the initiation codon in a messenger RNA. In some eukaryotic viruses, RNA upstream of the coding region forms an internal ribosome entry site (IRES) that directly binds to the 40S ribosomal subunit and enables translation initiation in the absence of many canonical translation initiation factors. The hepatit...
متن کامل